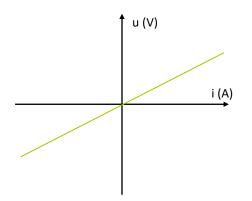


Marquage des Résistances électriques

Cours N°1

Savoirs Fondamentaux

<u>BUT</u>


Déterminer la valeur d'une résistance électrique en lisant les bagues de couleurs sur son corps.

<u>1ère Partie : Qu'est qu'une résistance ?</u>

Une résistance ou plutôt un résistor est un dipôle passif, symétrique, qui transforme toute l'énergie électrique qu'il reçoit en chaleur. Il n'est pas polarisé.

1) Caractéristique u=f(i).

L'intensité du courant électrique traversant une résistance est proportionnelle à la tension à ses bornes :

La caractéristique u=f(i) obtenue est une droite passant par l'origine.

Le résistor est donc linéaire.

2) Loi d'Ohm

D'après ce qui précède, on voit que la tension aux bornes d'un résistor linéaire est proportionnelle au courant qui le traverse. Ce coefficient de proportionnalité s'appelle R, c'est la résistance du résistor.

On a donc : $U = R \times I$ avec U en volt (V) ; I en ampère (A) et R étant la résistance exprimée en ohms (Ω).

La résistance se mesure avec un Ohmmètre qui se place en dérivation sur le résistor déconnecté du circuit et non alimenté.

3) Puissance dissipée dans une résistance

La puissance absorbée par le résistor est entièrement dissipée en chaleur, c'est l'effet Joule.

$$P = UI = RI^2 = \frac{U^2}{R}$$
 P s'exprime en Watts (W).

Remarque:

La taille et le diamètre du corps de la résistance donne sa puissance dissipée qui peut être de 1/8W ou de 1000W. Il faut donc tenir compte de l'intensité qui la traverse.

2ème Partie : Marquages sur les résistances

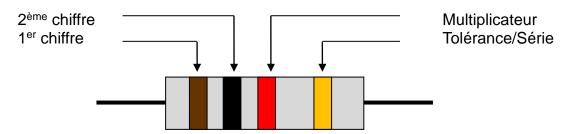
1) Code des couleurs.

Couleurs	Noir	Marron	Rouge	Orange	Jaune	Vert	Bleu	Violet	Gris	Blanc	Argent	Or
Chiffre	_	4	_		4		0	_				
significatif	U	1	2	3	4	5	6	/	8	9		
Multiplicateur	1	10	100	1 000	10 000	100 000					0,1	0,01
	10°	10¹	10 ²	10 ³	10 ⁴	10 ⁵					10 ⁻¹	10 ⁻²
Tolérance		1%	2%			0,5%	0,25%	0,1%	0,05%		±10%	±5%
Série E*		E96	E48			E192					E12	E24

*La série définie les valeurs normalisées pour un pourcentage de tolérance. Les séries les plus utilisées sont les suivantes :

Série E12: ±10% (Argent):

Valeurs normalisées (chiffres significatifs) :


10-12-15-18-22-27-33-39-47-56-68-82

Série E24: ±5% (Or):

Valeurs normalisées (chiffres significatifs) :

10-11-12-13-15-16-18-20-22-24-27-30-33-36-39-43-47-51-56-62-68-75-82-91

2) Utilisation.

La lecture se fait toujours avec la bague de tolérance à droite.

Exemple 1:

- 1^{er} chiffre : 1 - 2^{ème} chiffre : 0

- Multiplicateur : 100 ou 10²

- Tolérance (série): ±5%, série E24

La valeur de la résistance est : $10 \times 100 = 1000 \Omega$ soit 1 K Ω .

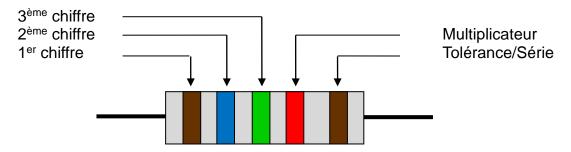
La tolérance est de 5% de la valeur indiquée soit : $0.05 \times 1000 = 50 \Omega$ La valeur exacte de la résistance est comprise entre :

$$(1000 - 50) \Omega$$
 et $(1000 + 50) \Omega$
 $950 \Omega \le R \le 1050 \Omega$

Exemple 2:

- 1^{er} chiffre : 4 - 2^{ème} chiffre : 7

- Multiplicateur : 1000 ou 10³


- Tolérance (série): ±10%, série E12

La valeur de la résistance est : $47 \times 1000 = 47 000 \Omega$ soit $47 \times K\Omega$

La tolérance est de 10% de la valeur indiquée soit : $0,1 \times 47000 = 4700 \Omega$ La valeur exacte de la résistance est comprise entre :

$$(47000 - 4700)$$
 Ω et $(47000 + 4700)$ Ω $\Omega \leq R \leq 51700$ Ω

Exemple 3 : Résistance de précision :

1er chiffre: 1
2ème chiffre: 6
3ème chiffre: 5

- Multiplicateur : 100 ou 10²

- Tolérance (série): ±1%, série E96

La valeur de la résistance est : $165 \times 100 = 16500 \Omega$ soit **16,5 K** Ω

La tolérance est de 1% de la valeur indiquée soit : $0.01 \times 16500 = 165 \Omega$ La valeur exacte de la résistance est comprise entre :

$$(16500 - 165) \Omega$$
 et $(16500 + 165) \Omega$
 $16335 \Omega \le R \le 16665 \Omega$

Exercice 1:

Soient les résistances suivantes :

- 1 / Donnez le code de couleurs de chaque résistance.
- 2 / Calculer les valeurs extrêmes RMax et Rmin entre lesquelles la valeur réelle de la résistance peut se trouver.

R1 = 680 Ω - E 12	Bleu, Gris, Marron, Argent : 680 x 0,1 = 68 Ω Rmax = 748 Ω - Rmin = 612 Ω
R2 = 2,4 MΩ - E 24	Rouge, Jaune, Vert, Or : $2,4x10^6 \times 0,05 = 120 \times 10^3 \Omega$ Rmax = $2,52 \text{ M}\Omega$ - Rmin = $2,28 \text{ M}\Omega$
R3 = 4,7 KΩ - E 12	Jaune, Violet, Rouge, Argent : 4700 x 0,1 = 470 Ω Rmax = 5170 Ω - Rmin = 4230 Ω
R4 = 43 KΩ - E 24	Jaune, Orange, Orange, Or : $43 \times 10^3 \times 0.05 = 2150 \Omega$ Rmax = $45.15 \text{ K}\Omega$ - Rmin = $40.85 \text{ K}\Omega$
R5 = 24,9 Ω - E 48	Rouge, Jaune, Blanc, Argent, Rouge : 24,9 x 0,02 = 0,498 Ω Rmax = 25,398 Ω - Rmin = 24,402 Ω
R6 = 330 KΩ - E 24	Orange, Orange, Jaune, Or : 330 x 10 ³ x 0,05 = 16500 Ω Rmax = 346,5 KΩ - Rmin = 313,5 KΩ

Exercice 2:

Déterminer la valeur nominale et la tolérance de chacune des résistances

R1 : Rouge , Noir , Jaune , Or $200\ 000\Omega$ ou $200K\Omega$: 5%

R2 : Jaune , Violet , Marron , Rouge 470Ω : 2%

R3 : Orange , Orange , Vert , Argent $3\ 300\ 000\Omega$ ou $3.3M\Omega$: 10%

R4 : Marron , Orange , Orange , Or , Marron $1,33\Omega$: 1%

R5 : Gris, Rouge , Rouge , Or 8200 Ω ou 8,2K Ω : 5%

R6 : Rouge , Violet , Jaune , Argent $270\ 000\Omega$ ou $270K\Omega$: 10%

Exercice 3:

Dans quelles séries normalisées trouve-t-on les résistances suivantes ?

 $R1 = 2.2 \text{ K}\Omega$ E12 et E24

 $R2 = 140 \Omega$ E48

 $R3 = 68 M\Omega E12 et E24$

 $R4 = 100 \Omega$ E12 et E24

 $R5 = 41 \text{ K}\Omega$ E96 si 41,2KΩ

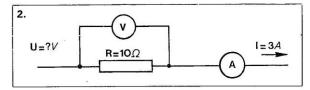
 $R6 = 1.2 \Omega$ **E24**

EXERCICE 4:

Suite à un calcul, la valeur trouvée pour un élément résistif est $9,17 \text{ K}\Omega$. Déterminez la valeur normalisée de la résistance à utiliser, sachant que celle-ci devra appartenir à la série E24. Vous justifierez votre réponse.

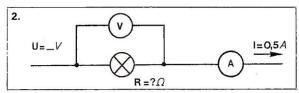
 $9,17K\Omega$ en E24 se rapproche de la valeur normalisée $9,1K\Omega$ dont la valeur max sera à +5% soit $9,555K\Omega$ et la valeur min à -5% soit $8,645K\Omega$. (9100 x $0.5 = 455\Omega$) La valeur choisie en E24 est $9,1K\Omega$: Blanc, Marron, Rouge, Or

Tableau des valeurs normalisées des résistances et code couleurs:

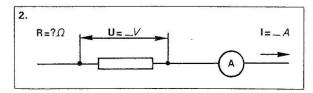

E6 20%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E192 (0.5%, 0.25%, 0.1%)	E6 (20%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E192 (0.5%, 0.25%, 0.1%)	E6 (20%)		E24 (5%)		E96 (1%)	E192 (0.5%, 0.25% 0.1%)
					100					245	215			470	464		464
			100	100	101				245	215	218					464	470
			100	102	102		220	220	215	221	221		470			475	475
		100		102	104					221	223					4/3	481
	100	100		105	105					226	226				487	487	487
			105		106				226	-	229					1.00.0	493
			355	107	107					232	232					499	499 505
				750000	110					Sections.	237						511
			200	110	111				237	237	240				511	511	517
			110	449	113			240		242	243					E22	523
		110		113	114					243	246			510		523	530
		110		115	115					249	249			310		536	536
			115	****	117				249	****	252				536	950	542
				118	118 120	1000000				255	255 258	050000				549	549 556
100				ACTOR	121	220				1000000	261	470				6000	562
				121	123				261	261	264		560	560	562	562	569
			121		124					207	267					F76	576
		120		124	126			270		267	271					576	583
		120		127	127			2/0		274	274					590	590
			127	12,	129				274	27.4	277				590	330	597
				130	130 132		270			280	280					604	604
	120	130	133	200000	133			300		2000	287			620		1979201	612
				133	135					287	291				222	619	626
				427	137				287	294	294				619	e24	634
			4	137	138					294	298					634	642
				140	140				301	301	301				649	649	649
			140	1.40	142					301	305					040	657
				143	143					309	309					665	665
		150	147	5088600	147		330	330	316	250,000	316		680	680	681	10.000	681
				147	149					316	320					681	690
				150	150					324	324					698	698
				130	152					324	328					090	706
			154	154	154				332	332	332				715	715	715
				.000	156						336					5.65	723
				158	158 160					340	340 344					732	732 741
	150				162						348			750			750
		160	162	162	164				240	348	352				-	750	759
				165	165				348	357	357				750	768	768
				103	167			360		33/	361					/08	777
		100		169	169	18000		500		365	365					787	787
			169	350000	172				365		370				787	0.00	796
150 -				174	174 176					374	374 379	1533370				806	806 816
				****	178	330				200	383	680					825
		180	178	178	180				383	383	388					825	835
				182	182				303	392	392				825	845	845
			4	102	184			390		332	397			820		0.10	856
			187	187	187			1000		402	402			200		866	866
				200.000	189 191				402	-0.000	407				866	3000000	876 887
	11237525			191	191		57505567			412	417		5980			887	898
	180	200	196		196		390			400	422		820			000	909
				196	198			430	400	422	427				000	909	920
				200	200				422	432	432				909	931	931
				200	203					432	437			910		931	942
				205	205					442	442			310		953	953
			205	-	208				442	****	448				953	200	965 976
				210	710					453	453				333	976	9/6

LOI D'OHM

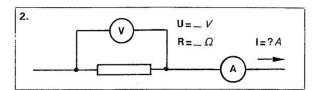
Rappel. L'intensité du courant dans une résistance dépend de la différence de potentiel (d. d. p.) aux bornes de cette résistance ; d'où la formule :


Grandeurs	D. d. p. U	= Résistance ×	du Courant I
Unités	Volt (V)	Ohm (Ω)	Ampère (A)

1. Quelle d. d. p. indique le voltmètre placé aux bornes d'une résistance R de 10 Ω si l'intensité du courant lue sur l'ampèremètre en série avec R est de 3 A?

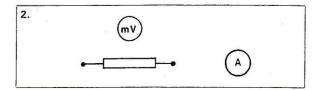

2

1. Quelle est la résistance d'une lampe électrique quand un voltmètre placé à ses bornes indique 120 V alors que l'intensité du courant lue sur l'ampèremètre est de 0,5 A?

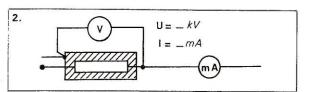


3

1. Quelle est la résistance d'un fer à souder qui, alimenté sous 220 V, absorbe une intensité de courant de 1,5 A?



1. Quelle intensité de courant indique l'ampèremètre placé en série avec un four dont la résistance est de 9 Ω si la d. d. p. lue sur le voltmètre branché à ses bornes est de 225 V?

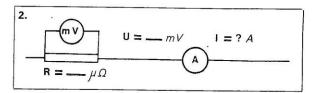

5

1. Un millivoltmètre est placé aux bornes d'une résistance marquée 0,15 Ω . Quelle d. d. p. indique-t-il si l'intensité du courant lue sur l'ampèremètre en série avec cette résistance est 0,2 A?

6

1. Au cours d'une mesure de résistance d'isolement faite d'après le schéma, le voltmètre indique 0,5 kV et le milliampèremètre 2,5 mA. Quelle est cette résistance?

7


Quelle doit être la résistance d'un rhéostat qui doit présenter à ses bornes une d. d. p. $U=20\ V$ quand il est traversé par un courant $I=0.5\ A$?

8

Quelle tension maximale peut supporter un potentiomètre de résistance 17 Ω pour un courant admissible de 10 A au plus ? Pourrait-il fonctionner en 220 V?

9

1. On demande l'intensité du courant qui doit circuler dans un shunt d'ampèremètre, marqué 3 000 $\mu\Omega$, pour obtenir 15 mV à ses bornes.

10

. Un ampèremètre porte sur son cadran une échelle à lecture directe pour 5 A et une petite indication : 10 mV (d. d. p. obtenue aux bornes de l'appareil quand l'aiguille indique le maximum du calibre : ici 5 A). Quelle est la résistance interne de cet appareil ?

Le cadran d'un voltmètre présente une échelle à lecture directe pour un calibre de 150 V et l'indication : $i = 7.5 \, mA$ (intensité du courant traversant l'appareil pour la déviation maximale de l'aiguille, c'est-à-dire, ici : 150 V). Quelle est la résistance intérieure de l'appareil?

12

Quelle tension existe-t-il aux bornes d'un shunt d'ampèremètre de résistance 0,2 Ω quand il est parcouru par un courant de 15 A? Quelle est l'intensité du courant qui traverse l'ampèremètre en dérivation aux bornes du shunt si la résistance interne de l'appareil est 2 000 Ω ? Quel pourcentage du courant principal représente-t-il?

13

Un voltmètre de résistance intérieure de 2 000 Ω et de calibre 3 V peut servir à mesurer 300 V à condition de lui adjoindre une résistance en série (ainsi Je courant maximum dans l'appareil reste le même et l'aiguille marque 3 V alors qu'il y a 300 V aux bornes du circuit : voltmètre et résistance additionnelle). Quelle est la valeur de cette résistance additionnelle?

Quel coefficient doit-on appliquer à la lecture pour obtenir la d. d. p. exacte?